421 research outputs found

    A theoretical estimate for nucleotide sugar demand towards Chinese Hamster Ovary cellular glycosylation

    Get PDF
    Glycosylation greatly influences the safety and efficacy of many of the highest-selling recombinant therapeutic proteins (rTPs). In order to define optimal cell culture feeding strategies that control rTP glycosylation, it is necessary to know how nucleotide sugars (NSs) are consumed towards host cell and rTP glycosylation. Here, we present a theoretical framework that integrates the reported glycoproteome of CHO cells, the number of N-linked and O-GalNAc glycosylation sites on individual host cell proteins (HCPs), and the carbohydrate content of CHO glycosphingolipids to estimate the demand of NSs towards CHO cell glycosylation. We have identified the most abundant N-linked and O-GalNAc CHO glycoproteins, obtained the weighted frequency of N-linked and O-GalNAc glycosites across the CHO cell proteome, and have derived stoichiometric coefficients for NS consumption towards CHO cell glycosylation. By combining the obtained stoichiometric coefficients with previously reported data for specific growth and productivity of CHO cells, we observe that the demand of NSs towards glycosylation is significant and, thus, is required to better understand the burden of glycosylation on cellular metabolism. The estimated demand of NSs towards CHO cell glycosylation can be used to rationally design feeding strategies that ensure optimal and consistent rTP glycosylation

    A systematic analysis of the expression of the anti-HIV VRC01 antibody in Pichia pastoris through signal peptide optimization

    Get PDF
    Pichia pastoris (Komagataella phaffi) has been used for recombinant protein production for over 30 years with over 5000 proteins reported to date. However, yields of antibody are generally low. We have evaluated the effect of secretion signal peptides on the production of a broadly neutralizing antibody (VRC01) to increase yield. Eleven different signal peptides, including the murine IgG1 signal peptide, were combinatorially evaluated for their effect on antibody titer. Strains using different combinations of signal peptides were identified that secreted approximately 2-7 fold higher levels of VRC01 than the previous best secretor, with the highest yield of 6.50 mg L-1 in shake flask expression. Interestingly it was determined that the highest yields were achieved when the murine IgG1 signal peptide was fused to the light chain, with several different signal peptides leading to high yield when fused to the heavy chain. Finally, we have evaluated the effect of using a 2A signal peptide to create a bicistronic vector in the attempt to reduce burden and increase transformation efficiency, but found it to give reduced yields compared to using two independent vectors

    Terahertz detection in single wall carbon nanotubes

    Full text link
    It is reported that terahertz radiation from 0.69 THz to 2.54 THz has been sensitively detected in a device consisting of bundles of metallic carbon nanotubes, quasi-optically coupled through a lithographically fabricated antenna, and a silicon lens. The measured data are consistent with a bolometric process and show promise for operation above 4.2 K.Comment: 9 page

    A low-cost biological agglutination assay for medical diagnostic applications

    Get PDF
    Affordable, easy-to-use diagnostic tests that can be readily deployed for point-of-care (POC) testing are key in addressing challenges in the diagnosis of medical conditions and for improving global health in general. Ideally, POC diagnostic tests should be highly selective for the biomarker, user-friendly, have a flexible design architecture and a low cost of production. Here we developed a novel agglutination assay based on whole E. coli cells surface-displaying nanobodies which bind selectively to a target protein analyte. As a proof-of-concept, we show the feasibility of this design as a new diagnostic platform by the detection of a model analyte at nanomolar concentrations. Moreover, we show that the design architecture is flexible by building assays optimized to detect a range of model analyte concentrations supported using straight-forward design rules and a mathematical model. Finally, we re-engineer E. coli cells for the detection of a medically relevant biomarker by the display of two different antibodies against the human fibrinogen and demonstrate a detection limit as low as 10 pM in diluted human plasma. Overall, we demonstrate that our agglutination technology fulfills the requirement of POC testing by combining low-cost nanobody production, customizable detection range and low detection limits. This technology has the potential to produce affordable diagnostics for both field-testing in the developing world, emergency or disaster relief sites as well as routine medical testing and personalized medicine

    A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems

    Get PDF
    Cell-free gene expression (CFE) systems are an attractive tool for engineering within synthetic biology and for industrial production of high-value recombinant proteins. CFE reactions require a cell extract, energy system, amino acids, and DNA, to catalyse mRNA transcription and protein synthesis. To provide an amino acid source, CFE systems typically use a commercial standard, which is often proprietary. Herein we show that a range of common microbiology rich media (i.e., tryptone, peptone, yeast extract and casamino acids) unexpectedly provide an effective and low-cost amino acid source. We show that this approach is generalisable, by comparing batch variability and protein production in the following range of CFE systems: Escherichia coli (Rosetta™ 2 (DE3), BL21(DE3)), Streptomyces venezuelae and Pichia pastoris. In all CFE systems, we show equivalent or increased protein synthesis capacity upon replacement of the commercial amino acid source. In conclusion, we suggest rich microbiology media provides a new amino acid source for CFE systems with potential broad use in synthetic biology and industrial biotechnology applications

    Modulating Integrin αIIbβ3 Activity through Mutagenesis of Allosterically Regulated Intersubunit Contacts

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Biochemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.biochem.9b00430.Integrin αIIbβ3, a transmembrane heterodimer, mediates platelet aggregation when it switches from an inactive to an active ligand-binding conformation following platelet stimulation. Central to regulating αIIbβ3 activity is the interaction between the αIIb and β3 extracellular stalks, which form a tight heterodimer in the inactive state and dissociate in the active state. Here, we demonstrate that alanine replacements of sensitive positions in the heterodimer stalk interface destabilize the inactive conformation sufficiently to cause constitutive αIIbβ3 activation. To determine the structural basis for this effect, we performed a structural bioinformatics analysis and found that perturbing intersubunit contacts with favorable interaction geometry through substitutions to alanine quantitatively accounted for the degree of constitutive αIIbβ3 activation. This mutational study directly assesses the relationship between favorable interaction geometry at mutation-sensitive positions and the functional activity of those mutants, giving rise to a simple model that highlights the importance of interaction geometry in contributing to the stability between protein–protein interactions.NIH P01 HL40387NIH R35 GM122603National Science Foundation 1709506National Science Foundation 165011

    Signatures of Quantum Transport Through Two-Dimensional Structures With Correlated and Anti-Correlated Interfaces

    Full text link
    Electronic transport through a 2D deca-nanometer length channel with correlated and anti-correlated surfaces morphologies is studied using the Keldysh non-equilibrium Green function technique. Due to the pseudo-periodicity of these structures, the energy-resolved transmission possesses pseudo-bands and pseudo-gaps. Channels with correlated surfaces exhibit wider pseudo-bands than their anti-correlated counterparts. By surveying channels with various combinations of material parameters, we found that a smaller transport mass increases the channel transmittivity and energy bandwidth of the pseudo-bands. A larger quantization mass yields a larger transmittivity in channels with anti-correlated surfaces. For channels with correlated surfaces, the dependence of transmittivity on quantization mass is complicated by odd-to-even mode transitions. An enhanced threshold energy in the energy-resolved transmission can also be observed in the presence of surface roughness. The computed enhanced threshold energy was able to achieve agreement with the experimental data for Si[110] and Si[100] devices.Comment: 9 pages, 10 figures, To be Published in Physical Review

    Density-Matrix Renormalization-Group Analysis of Quantum Critical Points: I. Quantum Spin Chains

    Full text link
    We present a simple method, combining the density-matrix renormalization-group (DMRG) algorithm with finite-size scaling, which permits the study of critical behavior in quantum spin chains. Spin moments and dimerization are induced by boundary conditions at the chain ends and these exhibit power-law decay at critical points. Results are presented for the spin-1/2 Heisenberg antiferromagnet; an analytic calculation shows that logarithmic corrections to scaling can sometimes be avoided. We also examine the spin-1 chain at the critical point separating the Haldane gap and dimerized phases. Exponents for the dimer-dimer and the spin-spin correlation functions are consistent with results obtained from bosonization.Comment: 21 pages, 12 figures, new results and added references, to appear in PR

    Model-based optimization of antibody galactosylation in CHO cell culture

    Get PDF
    Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch-to-batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade-off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding - specifically that of galactose and uridine - on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of ±5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher-performing bioprocesses
    • …
    corecore